The condition number of the BEM-matrix arising from Laplace’s equation

نویسندگان

  • W. Dijkstra
  • R.M.M. Mattheij
چکیده

We investigate the condition number of the matrices that appear in the boundary element method. In particular we consider the Laplace equation with mixed boundary conditions. For Dirichlet boundary conditions, the condition number of the system matrix increases linearly with the number of boundary elements. We extend the research and search for a relation between the condition number and the number of elements in the case of mixed boundary conditions. In the case of a circular domain, we derive an estimate for the condition number of the system matrix. This matrix consists of two blocks, each block originating from a well-conditioned matrix. We show that the block matrix is also wellconditioned.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Condition number of the BEM matrix arising from the Stokes equations in 2D

We study the condition number of the system matrices that appear in the Boundary Element Method when solving the Stokes equations at a two-dimensional domain. At the boundary of the domain we impose Dirichlet conditions or mixed conditions. We show that for certain critical boundary contours the underlying boundary integral equation is not solvable. As a consequence, the condition number of the...

متن کامل

Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation

Introduction Fractional differential equations (FDEs)  have  attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme  may be a good approach, particularly, the schemes in numerical linear algebra for solving ...

متن کامل

Saint-Venant torsion of non-homogeneous anisotropic bars

The BEM is applied to the solution of the torsion problem of non-homogeneous anisotropic non-circular prismatic bars. The problem is formulated in terms of the warping function. This formulation leads to a second order partial differential equation with variable coefficients, subjected to a generalized Neumann type boundary condition. The problem is solved using the Analog Equation Method (AEM)...

متن کامل

The panel-clustering method for the wave equation in two spatial dimensions

We consider the numerical solution of the wave equation in a two-dimensional domain and start from a boundary integral formulation for its discretization. We employ the convolution quadrature (CQ) for the temporal and a Galerkin boundary element method (BEM) for the spatial discretization. Our main focus is the sparse approximation of the arising sequence of boundary integral operators by panel...

متن کامل

New variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs

In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017